Servicing Brisbane, Logan, Ipswich, Redlands, Scenic Rim and the Gold Coast
WINTER SPECIAL!!! - Purchase any supplied and installed water heater and get 10% off any electric to gas stove conversion
BOOK NOW
0437543860
SOLAR HOT WATER
Next time you get a really big electricity or gas bill, your thoughts may turn to solar panels. Wouldn't it be good if you could catch all the power you need from the Sun? Millions of people already do get their energy this way, though mostly in the form of heat rather than electricity. Solar electric panels (also called solar cells or photovoltaic cells) that convert sunlight to electricity are still not widely used; solar thermal panels, which use sunlight to produce hot water, are much more common. Even in relatively cold, northern climates, solar hot-water systems can chop significant amounts off your fuel bills. Typical systems generate anything from 10–90 percent of your hot water and pay for themselves in about 10–15 years (even sooner if you're using them for something like a swimming pool). Let's take a closer look at how they work!
Photo: Making hot water for free (well, once you've paid for the equipment, anyway). This large solar heating system is on the sun-facing roof of a home in Golden, Colorado. Photo by Warren Gretz courtesy of US Department of Energy/National Renewable Energy Laboratory (DOE/NREL).
How to build a solar heating system
Photo of pipes entering and leaving the solar thermal collector on a roof.
Photo: The pipes that carry hot water to and from a roof-top, solar-thermal collector and into your house. Tight rubber seals (collars) keep cold rain from entering too! Photo by Warren Gretz courtesy of US Department of Energy/National Renewable Energy Laboratory (DOE/NREL).
Imagine you're an inventor charged with the problem of developing a system that can heat all the hot water you need in your home. You've probably noticed that water takes a long time to heat up? That's because it holds heat energy very well. We say it has a high specific heat capacity and that's why we use it to transport heat energy in central heating systems. So can we devise a simple solar heating system using water alone?
Stand a plastic bottle filled with cold water in a window, in the Sun, and it'll warm up quite noticeably in a few hours. The trouble is, a bottle of water isn't going to go very far if you've a house full of people. How can you make more hot water? The simplest solution would be to fill lots of bottles with water and stand them in a row on your window-ledge.
Or maybe you could be more cunning. What if you cut the top and bottom off a plastic bottle and fitted pipes at each end, feeding the pipes into your home's hot water tank to make a complete water circuit. Now fit a pump somewhere in that loop so the water endlessly circulates. What will happen is that the sunlight will systematically heat all the hot water in your tank (although it'll never get particularly warm because plastic bottles standing on window-ledges aren't that brilliant at collecting heat). But, in theory, you've got a working solar heating system here that's not a million miles away from the ones people have installed on their homes. It's very crude, but it works in exactly the same way.
"... One of the most effective and efficient steps the government can take is to encourage the use of solar hot-water systems—a well-developed and relatively low-tech method for using the sun's energy."
Larry Hunter, The New York Times (Op Ed), 2009
The parts of a solar-thermal hot-water system
In practice, solar heating systems are a little bit more sophisticated than this. These are the main parts:
Collector
This is the technical name for the big black panel that sits on your roof. Smaller homes (or ones in hotter climates) can get away with much smaller panels than larger homes (or ones in colder climates); typically collectors vary in size from about 2–15 square meters (~20–160 square feet). Not surprisingly, collectors work most efficiently on south-facing roofs that have a direct, unblocked view of the Sun (with few trees or buildings in the way). Broadly speaking, there are two types of collectors known as flat-plate and evacuated tube.
Flat-plate collectors
Flat plates are the simplest collectors: at their most basic, they're little more than water pipes running through shallow metal boxes coated with thick black glass. The glass collects and traps the heat (like a greenhouse), which the water running through the pipes picks up and transfers to your hot water tank.
Evacuated tubes
These are a bit more sophisticated. They look like thicker versions of fluorescent strip lights, but work more like vacuum flasks. Completely empty (hence the name "evacuated"), they collect and trap the heat from sunlight. This flows to a collecting device (sometimes called a manifold) at the top (or at one end) through which water or another fluid flows, carrying the heat to the hot water tank. Unlike flat-plate collectors, they don't let as much heat escape back out again, so they're more efficient. However, since they're a bit more hi-tech and sophisticated, they are sometimes more expensive.
Photo of flat-plate solar thermal collector on house roof. Photo of evacuated tube solar thermal collector on house roof.
Photo: Two types of solar-thermal collector: 1) A flat-plate collector. Photo by Alan Ford. 2) An evacuated-tube collector. Note the gray manifold at the top and the white water pipe flowing through it. Photo by Kent Bullard, US National Park Service. Both photos courtesy of US Department of Energy/National Renewable Energy Laboratory (DOE/NREL).
Hot water tank
There's no point in collecting heat from your roof if you have nowhere to store it. With luck, your home already has a hot-water tank (unless you have a so-called gas "combi" boiler that makes instant hot water) that can be used to store heat from your collector; it's a kind of "hot water" battery that you heat up at conveniently economic times (usually at night) ready for use during the day. If you don't have a hot-water tank, you'll need to have one fitted. The more people in your household, the bigger the tank you'll need. A typical tank for a family home might be about 100–200 liters (30–60 gallons).
Heat exchanger
Typically, solar panels work by transferring heat from the collector to the tank through a separate circuit and a heat exchanger. Heat collected by the panel heats up water (or oil or another fluid) that flows through a circuit of pipes into a copper coil inside your hot-water tank. The heat is then passed into the hot water tank, and the cooled water (or fluid) returns to the collector to pick up more heat. The water in the collector never actually drains into your tank: at no point does water that's been on your roof exit through a faucet!
Photo of solar-thermal energy collectors using mirrors and water pipes.
Photo: A different and much bigger solar hot-water system. This one uses parabolic mirrors to collect the Sun's energy and focus it onto water pipes running through their centers. The water is pumped back to the building in the background (Jefferson County Jail in Golden, Colorado). Photo by Warren Gretz courtesy of US Department of Energy/National Renewable Energy Laboratory (DOE/NREL).
Pump
Water doesn't flow between the collector and the tank all by itself: you need a small electric pump to make it circulate. If you're using ordinary electricity to make the water flow, the energy consumed by the pump will offset some of the advantage of using solar-thermal power, reduce the gains you're making, and lengthen the payback time. Cleverly, some solar-thermal systems use solar-electric (photovoltaic) pumps instead, which means they are entirely running on renewable energy. A good thing about a design like this is that the solar pump is most active on really sunny days (when most hot water is being produced) and less active on cold, dull days (when, perhaps, you don't want your solar panel to be working at all).
Control system
If it's the middle of winter and your roof is freezing cold, the last you thing you want is to transfer freezing cold water into your hot water tank! So there is also generally a control system attached to a solar-thermal panel with a valve that can switch off the water circuit in cold weather. A typical control system may incorporate some or all of the following: a pump, flowmeter, pressure gauge, thermometer (so you can see how hot the water is), and thermostat (to switch off the pump if the water gets too hot).
from http://www.explainthatstuff.com/
SITE BY JR GAS & WATER
ABN 99713461651
QBCC 1297081
PLUMBING LIC 29751 GAS LICENSE L31550 ELECTRICAL LICENSE 144677
Instantaneous Hot Water
Hot Water Repairs
Hot Water Installations
Supply and/or Install
Electric Hot Water
Gas Hot Water
Continuous Flow Hot Water
Proudly working with RHEEM, RINNAI, VULCAN, STIEBEL ELTRON, BOSCH, THERMANN & EVERHOT hot water heaters and systems
Shop trade only with TRADELINK
Email info@jrgasandwater.com.au
Phone 0478521501
Business Hours
Mon-Fri 7.30am to 7.30pm
Sat 8am to 12pm (Hot Water Installs Only)
Sun 5pm to 8pm (Hot Water Bookings Only)
NO 24 HOUR SERVICE
Web www.jrgasandwater.com.au
Servicing Brisbane, Logan, Ipswich, Redlands, Scenic Rim and the Gold Coast
Plumbing
Plumber Supplies
Toilet Installations
New Tapware
Follow us on Google+, Facebook, Twitter and Instagram!
CALL NOW 0478521501
CLICK HERE TO GO TO CLAIMS AND REBATES
Servicing Brisbane, Logan, Ipswich, Redlands, Scenic Rim and the Gold Coast
WINTER SPECIAL!!! - Purchase any supplied and installed water heater and get 10% off any electric to gas stove conversion
MENU
WINTER SPECIAL!!! - Purchase any supplied and installed water heater and get 10% off any electric to gas stove conversion
BOOK NOW
0437543860
Servicing Brisbane, Logan, Ipswich, Redlands, Scenic Rim and the Gold Coast
WINTER SPECIAL!!! - Purchase any supplied and installed water heater and get 10% off any electric to gas stove conversion
BOOK NOW
0437543860